The product of the survival of motor neuron (SMN) gene is a human telomerase-associated protein.

نویسندگان

  • François Bachand
  • François-Michel Boisvert
  • Jocelyn Côté
  • Stéphane Richard
  • Chantal Autexier
چکیده

Telomerase is a ribonucleoprotein (RNP) complex that is minimally composed of a protein catalytic subunit, the telomerase reverse transcriptase (TERT), and an RNA component, the telomerase RNA. The survival of motor neuron (SMN) gene codes for a protein involved in the biogenesis of certain RNPs. Here, we report that SMN is a telomerase-associated protein. Using in vitro binding assays and immunoprecipitation experiments, we demonstrate an association between SMN and the telomerase RNP in vitro and in human cells. The specific immunopurification of SMN from human 293 cells copurified telomerase activity, suggesting that SMN associates with a subset of the functional telomerase holoenzyme. Our results also indicate that the human telomerase RNA and the human (h) TERT are not associated with Sm proteins, in contrast to Saccharomyces cerevisiae telomerase. Immunofluorescence analysis showed that hTERT does not specifically colocalize with wild-type SMN in gems or Cajal bodies. However, a dominant-negative mutant of SMN (SMNDeltaN27) previously characterized to elicit the cellular reorganization of small nuclear RNPs caused the accumulation of hTERT in specific SMNDeltaN27-induced cellular bodies. Furthermore, coexpression of SMNDeltaN27 and hTERT in rabbit reticulocyte lysates decreased the efficiency of human telomerase reconstitution in vitro. Our results establish SMN as a novel telomerase-associated protein that is likely to function in human telomerase biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons?

Spinal muscular atrophy (SMA), the most common hereditary motor neuron disease in children and young adults is caused by mutations in the telomeric survival motor neuron (SMN1) gene. The human genome, in contrast to mouse, contains a second SMN gene (SMN2) which codes for a gene product which is alternatively spliced at the C-terminus, but also gives rise to low levels of full-length SMN protei...

متن کامل

A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy.

Mutations in the SMN1 (survival motor neuron 1) gene cause spinal muscular atrophy (SMA). We now show that SMN protein, the SMN1 gene product, interacts directly with the tumor suppressor protein, p53. Pathogenic missense mutations in SMN reduce both self-association and p53 binding by SMN, and the extent of the reductions correlate with disease severity. The inactive, truncated form of SMN pro...

متن کامل

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III.

Spinal muscular atrophy (SMA) is caused by deletion or specific mutations of the telomeric survival motor neuron ( SMN ) gene on human chromosome 5. The human SMN gene, in contrast to the Smn gene in mouse, is duplicated and the centromeric copy on chromosome 5 codes for transcripts which preferentially lead to C-terminally truncated SMN protein. Here we show that a 46% reduction of Smn protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2002